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Let X denote a uniformly convex (real) vector space and let M denote a
closed subset of M. Then from the work of Efimov and Stechkin [1] it is
known that if M is also approximatively compact, then each x E X will have
a unique closest point in M if and only if M is convex. Thus for the usual
nonlinear approximating families such as the rational or exponential families,
there will exist functions with more than one best approximation (if we are
approximating in an L p space with 1 <P < OCJ).

Specific examples of such functions were given in 12/ by Lamprecht for
approximation by polynomial rational functions and in [31 by Rice for
nonlinear unisolvent families. In these cases and to our knowledge in all the
other published examples, a symmetry argument was used to produce a
function with two best approximations. Wolfe in [41 showed that for each
positive integer k there is anfE LzIO, II having at least k best local approx­
imations from

R;;,IO, II = \p/q ip(x) = <, aixi, q(x) = ;", bix i , q(x) >°
t i 0 i (l

I
for °~ x ~ 1 \

provided that In > n. Braess in [51 (among other things) removed the
restriction In > 11 and asked if it was possible to find a function f having at
least three best approximations (not just local best approximations) from one
of the standard nonlinear approximating families.

An affirmative answer to this question assuming "three" could be replaced
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by a diverging sequence of positive integers would show that there is no
uniform upper bound on the number of best approximations that a function
can have. This is in contrast to the situation using the uniform norm 16 l.

In this paper we shall give a straightforward technique that can explicitly
produce functions with any specified number (call it N) of global approx­
imations from a class of nonlinear families (with one nonlinear parameter)
that includes many of the so called T-families of Hobby and Rice 171.

We are not able at this time to prove rigorously that the N approximants
formed by our procedure are always best approximations to the function
produced. though all our empirical evidence indicates this is so. However, we
are able to give sufficient conditions for the approximations produced to be
(global) best approximations and we are able to check these conditions
numerically for the cases N = 3 and N = 5.

ApPROXIMATING FAMILY

The approximating family we shall use is defined by a continuous real­
valued kernel function K(·,·) of two real variables defined on
(-d, d) X Ia, bI for some a > band d > 0 which satisfies the following con­
ditions:

(i) (oK/oP)(j3,x) exists and is continuous on (~d,d)X la,bl,
Oi) K(j3I" ), ... , K(j3N' .), (oK/ap)(j3l" )•..., (aK/afJ)(j3N' .) are linearly

independent on Ia, b I for any N distinct P's, N = 1, 2,....

EXAMPLE 1. (a) K 1(j3, x) = e[)X on (-00,00) X 10, II
(b) KiP, x) = 1/(1 - px) on (-I, I) X I-I, II·

Given jEL 2 la,bl we shaH consider approximations of the form (*)
aK(p, x). That is, given f, we seek a * E Rand f3 * E (-d, d) such that

Ilj-a*K(j3*, ')11= inf lij-aK(j3. ·)11,
rtER,{~EI cf.dl

where II II is the L 2 norm on la, b I with respect to Lebesgue measure. For
notational simplicity let

I
u(j3, x) = II K(jJ, . )11 K(jJ. x)

denote the normalized version of K(jJ. x) and let u'(jJ, x) denote
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(Bu/OfJ)(j3, X). Also, '",1 will denote the usual inner product In L,la,bl
defined by

.h

Ig, h I= I g(t) h(t) dt
'(J

Our goal is to construct a function f E L ,Ia, b I that has many best
approximations of the form (*). To do this we shall consider functions of the
form

( I )

where 13-" ,.. ·,13 _I ,130.13, ...., fJ" are 2n + I given distinct points in (-d. d) and
where we require that f also satisfy the conditions:

If - U(jii' '), u(j3i' .) 1= 0,

If - u(fJi' .), Ul(jji' .) 1= 0.
i=O,±I,.... ±11.

(2)

(3 )

The system (2) and (3) is equivalent to the system one obtains by
requtrlng that (B/813)11 f - u(fJ, . )11

2 10 IIi = 0, i = 0, ± L. .., ±11, which is a
necessary condition that each of the functions U(fJi' .) =
(1/IIK(fJi' ·)II)K(j3i'·) i=O. ±I.. .. , ±n, be a best approximation tofof the
form (*). The use of approximants normalized to unit length is for
convenience only. The only essential thing is that they have the same norm.

Thus. we wish to choose fJ/s, a/s. and bi's so that u(j3i' .) is a best
approximation to J, i = 0. ± 1,.... ± 11. Before showing that given the fJi's the
corresponding ai's and bi's defining f are uniquely determined we offer the
following example.

EXA'vIPLE 2. For K(fJ. x) = ellx over (-00,00) X [0. 11 we have

u(j3,x) = 1. fJ=O

= (~)Ij2 eOx
e20- I .

and fIx) takes the form f(x) = \~;' ,,(a i + bix) ell;'. Also (2) and (3) can
be written in the form

If - a(fJi) eO;". ell,x 1= 0.

If - a(j3Je lli" xell;x 1= 0.
i = 0, ± I,.... ± 11.

(2 1
)

(3' )

where 130 = °and a(fJ) = (I/IIK(jj, . )11) = I.I~ e 2iJ1 dtl 12 = (2/3/e 2
/
1

- 1)1 2
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LEMMA 1. Under the above assumptions on the kernel K(· . . ) and given
··d < fJ If < fJ If C I < ... < 13 I < fJo < ." < fJlf < d there exists a unique f of
the form (I) satisfying (2) and (3).

Proof The system (2) and (3) can be written as

If: u(fJj' .) 1= 1.

IJ.u'(fJj'·)!=O.
i = 0, ± 1.. ... ±n,

(4)

(5 )

since II u(fJ• . )11 = I for all fJ E (-d. d). Using the form off in (l ). (4) and (5)
take the form

If

\' (aj!u(fJj. '),u(fJj, .)\ +bjlu'(jJj' .). u(fJ;) I) = 1.
-If

i = O. ± 1.. ..• ± n.
If

\ ' (ailu(jJj •. ). u'(jJj. ')1 + bj[u'(jJj'·)' U'(jJi,·)j) = O.
··If

(6)

(7)

The system (6), (7) is a linear system of 4n + 2 equations in the 4n + 2
unknowns ai' bi' j = O. ± 1•...• ±n. where the coefficient matrix is a Gram
matrix formed from the linearly independent functions

u(fJ n' .)•...• u(fJn' . ). u' (jJ If" ) ••••• u' (fJ If' • ).

Thus (6), (7) has a unique solution as claimed. I
In view of Lemma 1. our problem is to make a proper choice of IJ;.

i = O. ± I•... , ±n, to insure that the corresponding function f of the required
form actually has u(jJj. '), i = O. ± ..... ±n. as best approximations. A natural
choice is to place the nodes symmetrically about the origin and this is what
we shall do. (Empirically we found that nonsymmetric choices often
produced only local best approximations or even saddle points.) Thus for
symmetry we require:

i = 0..... n - 1.

(8 )

(9 )

( 10)

We shall also assume that the normalized kernel function u(fJ. . ) satisfies
the midpoint symmetry condition.

u( -fJ. x) = u(fJ. 2p .... x). where p = (a + b )/2. (II)

Remark. For both u 1(fJ.x)=(2fJ/e 2I'-I)u e[)\ and II 2Vi. x)
(( 1 .11 2 )/2) 12 1I( 1 - fJx) (the normalized kernels for the functions of
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example I) it is simple to check that (I I) holds on (~oo, OCJ) X 10, I I and
(~L I) X I-I, 11, respectively.

LEMMA 2. Let f be a function of the form (I) with the (1's satisfving (8),
(9), al1d (10) and such that u satisfies (II). Then

(a) f(x) = f(2p -- x), x E la, b I, p = (a + b )/2,

i = 0, I,.. ., n and in particular bo = 0. (b)

Proof Let h(x) =f(x) - f(2p - x). By differentiating both sides of (I I)
with respect to (1 we obtain the identity.

II' (-(1. x) = II' ((1, 2p - x).

Using (I I) and (12) and the definition of h. we can write h is the form

(12)

which shows that h is a linear combination of 11((1;, .) and II' ((1j' .). i = 0.
J I ..... ± 11.

CLAIM l. .I;; h(x) u((1j' x) dx = 0. i = 0, ± I..... In.

CLAI\.1 2. .1;; h(x) 1I'((1j. x) dx = 0, i = 0. ± I... .. ±11.

If these claims are proved then by considering (13) the four conclusions
(a Hd) would obviously follow immediately.

ProqlofClaim I. .1';; h(x) lI(ji j. x) dx = (7,f(x) 11((1;, x) - J7,f(2p-x)
ll(jJ,. x) dx = I - J7,f(t) u(fJi' 2p _. r) dl by taking I = 2p - x and using (4).

But by (I I). r~ f(t) u(fJj' 2p ~ t) dl = .I·~ f(t) u( -(1j' I) dt = I and so
I;; h(x) ll(ji;. x) dx = 0. i = 0, ± I, ... , ±11, proving Claim I.

Ptoqj" ql Claim 2. We have r;; h(x) u'(fJj' x) dx = ° - .I;;f(l)
llf(jJ;.2p-t)dl again letting t=2p-x and using (5). By (12).

.I;;,/( t) II
f
(jJ j, 2p - t) dt = - J~f(l) u' (-Ii;. t) dt = °(by (5)) so ,I';; h(x) u' (fJj'

x) dx = 0, i=O, ±I ..... ±11. I
Our original approximation problem involves approximating f by

functions of the form aK((J• . ) and hence appears to have two parameters (1

and Ii, However. we may eliminate (1 by noting that if (1 *K((J *, . ) is a (local)
best approximation to I it must satisfy the condition

()

~_. II- aK(fJ,·)J - aK((J,· )lla a' = °
(/a 13 I"

(14)
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and this yields

which implies that

Thus if we let
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II--a*K(fJ*, ·).K(jJ*. ·)1 =0.

li;K(fJ*. ·)1
a * = -,-------,---,-----c--'----c-IK(fJ*• . ). K(jJ* . . )I'

(15 )

where r(fJ. x) = s(fJ) K(fJ. x) ( 16)

with s(jJ) = If, K(jJ, .) 1/11 K(jJ, . )11 2 for fJ E (-d, d), then the problem of
finding a best approximation to I is equivalent to finding a fJ E (-d. d) that
minimizes Ij/.

LEMMA 3. For each fJ E (-d, d). 1j/(fJ) = II I 11 2
- If. u(fJ. . ) \'.

Proof 1j/(jJ) = II 111 2
- 21f, r(jJ, . ) I + II r(fJ• . )11 2

• But from (16).

II r(jJ. . )11 2 = II s(jJ) K(fJ• . )11 2 = I~~i: ;,irII K(jJ, . )i1 2

r· K(fJ,·) 1
2

I I'
= li. IIK(jJ, . )11 J = f, u(fJ• . ) .

and also

li;K(jJ, ')1
2

If. r(jJ, .) 1= s(jJ) If, K(jJ, .) 1= II K(jJ, . )112

= If.u(jJ. ')1 2
•

Thus. 1j/(jJ) = IIII1 2 -If, u(jJ.· )1 2
• I

LEMMA 4. For each fJ E (-d. d). IJ; u( -fJ• . )I= Ii; u(jJ. . ) I·
Proof If, u(-fJ. ·)1 = J~f(x) u(-fJ. x) dx = .I~f(x) u(fJ. 2p - x) dx=

J~I(2p - t) u(jJ, t) dt = J~I(t) (jJ, t) dt = If, u(jJ. .) I. where t = 2p - x and
where we have used Lemma 2. I

From Lemma 4. the following two corollaries are immediate.

COROLLARY 1. 1j/(jJ) = Ij/( -fJ) for every fJ E (-d. d).

COROLLARY 2. For i = 0, ± 1•.... ±n. 1j/(fJ;) = IIIil 2

:II II > I.

and hence
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From the definition of fJi we have that U(j3i") = r(j3i' . ).
i = 0. ± I, ±2,..., ±n, but it remains to be seen whether or not the value
1/1(0) = IIfl1 2 ~ I is a global minimum for 1/1. The following lemma
demonstrates that we may confine ourselves to a bounded interval in
checking this.

LEMMA 5. For fJ satisfying Ilu(j3, ·)111 < I/llfllI' we have 1/I(fJ') > 1/1(0),
Il'here II III denotes the L I-norm.

Proof 1/I(j3) = II f 11 2
- If, u(j3, .W) II! 11 2 -II f II ~ II u(j3, . )11 i and there­

fore 1/I(j3) - 1/1(0) = I ~ If, u(j3, .W) I -II f II ~ II u(j3, . )11 i. Htmce if
I ~ II f II; II u(fJ, . )11 i > 0, then 1/I(fJ) > 1/1(0) and this condition is equivalent to
Ilu(fJ,·)III<I/llf . I

COROLLARY 3. For K(fJ,x)=e8x over (-00. oo)X 10, II iffJ> 211fl1 2
r

then 1/I(jJ) > 1/1(0).

ProQf We simply calculate

. ( 2fJ ) 1/2 . 2fJ . 1!2 ell - I
Ilu(j3,· )111 = J6 elil _ 1 e1lx

dx = (e 28 - 1) -fJ-

For #>0, (ell-I)/(eI1+I)<I and hence liu(j3,·)III«2/#ju. By
Lemma 5, if (2IfJ)l/2 < 1/IIfilf then 1/I(fJ) > 1/1(0). But this is equivalent to

# > 2ilfil 2
!" I

As mentioned in the introduction we do not have a proof of the following
theorem in the strict mathematical sense. We are able to give a
computational "proof' in the manner described below which shows that
Braess's question has been answered in the affirmative up to the accuracy of
our numerical procedure.

THEOREM. For n = 1. #1 = 2. and K(jJ, x) = e8x defined over
(co. (0) X 10, II. there exists a unique function f(x) of the form II) have
exactly 2n + 1 = 3 global best approximations (in the L 2 sense). namely.
u(~2, x). u(O, x) = I, and u(2, x), where u(j3, x) = (2fJle 211

- 1)12 ell'.

"Proof" The "proof' of this result was accomplished as follows. The
values ao' ai' and b l that determine f were found by solving the linear
system (6), (7) numerically. Then by computing the values offon 10, lion
a grid of equally spaced points whose common spacing was sufficiently
"small'" (a spacing of 0.05 was found to be sufficient). the inequality
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11/110: < 3.76 was obtained. Finally. a similar search verified that p= ±2, 0
were the only minima of lfI(ji) in (--32.32) and since 2 111 2

j < 32 we
concluded from Corollary 3 that 1 has u(O. x). u(2. x), and u( -2. x) as its
only global best approximations. "I"

This same technique was successfully applied to the case 11 = 2 (i.e..
N = 5). For 11 ;;: 3 (i.e., N;;: 7) the interval obtained from Corollary 3 was so
large that overflow occurred in the computations and so the results were
unreliable. However. all the evidence at our disposal indicates that the
following conjecture is correct.

Conjecture. Given 11;;: I and any 211 + 1 distinct values jii'
i = a ± 1,.... ±11. symmetrically placed about the origin in (-d. d) there tS a
unique 1 of the form (1 ) having each function u(fJ; . . ). i = O. t I..... ± 11. as its
set of global best L 2-approximations from the approximating family
1= jaK(ji. . ) a E R. ji E (--d. d)f.
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